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LETTER TO THE EDITOR 

The singularity of the background scalar field and the 
fractional fermion charge? 

Ru-keng WO, Zhen-yin YangO and Tao ChenP 
$ Center of Theoretical Physics, China Center of Advanced Science and Technology (World 
Laboratory), Beijing, People’s Republic of China 
5 Department of Physics, Fudan University, Shanghai, People’s Republic of China 

Received 4 March 1988 

Abstract. It is shown that the singularity of the background scalar field, even if this field 
is topological trivial and/or localised in a finite region, will give rise to fractional fermionic 
charge of the vacuum sector of a quantised Dirac field in (1 + 1) dimensions. The physical 
effect of the singularity of the background field is discussed. 

Since the pioneering work of Jackiw and Rebbi [l], much effort has been devoted to 
studying the charge fractionalisation of a quantised Dirac field interacting with a 
background field in ( 1  + 1 )  and ( 1  + 3) dimensions. They include the adiabatic approxi- 
mation by Goldstone and Wilczek [2], the anomalous commutors by Bardeen et a1 
[3], the Jost function by Blankenbecler and Boyanovsky [4], the Levinson theorem by 
Ma et a1 [5], and others (see, e.g., [6]). At zero temperature, they come to the same 
conclusions that: (i) the zero modes of a fermion interacting with a scalar field in 
( 1  + 1)  dimensions and with a monopole field in ( 1  + 3) dimensions give rise to states 
with a fermion number f; (ii) if the background field is topologically non-trivial, the 
Dirac Hamiltonian does possess normalisable zero-energy states and fractional charge 
will occur. Recently, many authors have tried to extend this discussion to finite 
temperature, using different methods, for example, the trace identity method by Niemi 
and Semonoff [7], chemical potential by Soni and Baskaran [8] and the generalised 
Bogoliubov transformation by two of the present authors [9]. 

In order to make the conclusions at zero temperature transparently, Jackiw and 
his co-workers [ 101 analysed the limit of infinite soliton-antisoliton separation L-, CO 

carefully. They pointed out that the total charge in a soliton-antisoliton system has 
integer eigenvalues, but in the limit L +  CO, the localised charge operator has fractional 
eigenvalues, without fluctuations. Furthermore, using the Green function method, 
Bernstein and Brown [ 111 examined the ( 1  + 1)-dimensional fermionic theory quantised 
in a finite region and found that the vacuum charge cannot be an irrational number 
for a $finite region, but when the infinite volume limit is taken the boundary charge 
escapes to infinity, leaving behind a fractional charge. 

The present letter evolves from an attempt to investigate the behaviour of a fermion 
field with scalar coupling in a finite region. We find that if the background scalar field 
has a singularity in this finite region, even though the scalar field is localised in a finite 
volume, the vacuum charge can be a fractional charge, without fluctuation. 

t Supported in part by the National Science Foundation of China under Grant no 1860124. 
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In order to justify this conclusion, let us consider a simple model. The (1+ 
1)-dimensional Dirac equation with the prescription a = u2, p = (T, is 

E $ = [ a p + P 4 ( x ) l $  (1) 

where 4 ( x )  is a scalar background field chosen as 

4(x) = p ( e ( - a - X ) - p e ( X + a ) e ( - - X - E )  

s p e ( x +  E ) e ( - x +  E )  - p e ( x  - E ) e ( - X +  a ) + p e ( x  - a )  ( 2 )  

(see figure 1) where 6 ( x )  is the step function 

We solve the Dirac equation (1) with this potential + ( x )  first and then make the 
potential barrier approach infinity ( p  +CO) and the barrier length E approach zero 
( E + O ) .  In this limit, the scalar potential + ( x )  is localised in a region [ X I <  a and it 
has a singularity at x = 0. 

We decompose the eigenfunction $ ( x )  into two components 4 = (:) and find 

or 

EU = - V I +  +V 

Ev = U‘+ C$U 

E 2 u  = -u”+(c,b2-4’)u 

E 2 v  = - v”+ ( 42 + 4’) U. 

(3)  

(4) 

Noting that 

4% 4‘= p 2 T 2 p 6 ( x +  a )  i 2 p 6 ( x +  E )  F 2 p 6 ( x -  E ) * 2 p 6 ( x  - a )  ( 5 )  

we get the boundary conditions of v 

x = - a  0-,+ = La- 

X = - E  U-,+ = 

X = E  U,+ = 0,- 

x = a  U,+ = U,- 

V I , +  - v:,- = -2pv- ,  

U:+ - v:- = 2pv,. 

r 
Figure 1. The background field +(x). 



(3): 

U =  
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The solutions of v which satisfy the boundary conditions ( 6 )  are 

’ A  ekx x < - a  

A [ ( 1 - - + - e  p 2  p2 - 2 k a + 2 k & )  - e - 2 k s  

k2 k2  

(7) 

2 +- 1 - - + - e  - 2 k a + 2 k & >  e 2 k ~  + ( 1  - $ ) ( . - 2 k a  - ”[ ( p2 k k2  k2  

where 

k2 = p 2 -  E 2  ( 8 )  

and A is a normalised constant. Another component U can be obtained from equation 

x < - a  

- a  S x < --E - ~ [ ( i - ~ ) ( l ” - k ) l / ~  +- -  E ( : 5 : ) ’ ; ’ e - 2 k a e - k x  

[ ( p2  ” 2 - 2 k a + 2 k ~ ) ( ” ) ’ I ’ ~ k x + E (  1 - : ) ( ~ - - 2 k a - ~ - 2 k ~ )  

-A{ ( 1  -f)[( 1 - d + L e - 2 k a + 2 k €  2 - e - 2 k a )  e - 2 k F ] ( @ ) 1 ’ 2  ekx 

” ” + k  e 

A 1 - - + - e  
k2 k2 ” + k  

x ( @ ) ‘ I 2  e - - ]  --E s x  < 
t L - k  

CL-k 
( 9 )  

k 2  k2  

2 

”[( k k2  k2 ) + (1 -5) ( e - 2 k a  - e - 2 k E ) ] }  
+- 1 p2 I e-2ka+2k& 

x -  ( : ; i ) ” 2 e - k x  e < x < a  

1 A 1 __  1 _ _  e 2 k a + E e - 2 k a  ] +$[ ( 1  -E) e 2 k a - 4 k ~  + E e - 2 k a + 4 k ~  {( ;?[( E) k k 

+- ”( 1 - -  E)( I + -  ’l) ( e 2 k e -  . e - 2 k ~ ) ) ( e ) ‘ ’ 2  e - k x  a < x. 
k CL-k 
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The equation of the energy spectra is 

It can easily be shown that solutions (7) and (9) cannot give us a fractional fermion 
charge, without fluctuations. 

Now we are in a position to consider the limit of p + 03 and E + 0. In this condition, 
equation (10) becomes 

( 1 1 )  p 2  - k2 = ~2 = /*.2 e-4ka 

Obviously, when p + 00, i.e. k + 00, equation ( 1  1) has zero modes. 

operator as 
Using the method given by Jackiw et a1 ( lo) ,  we expand the second quantised + 

+ = [a,+,b) exp(-iEnt) + b:a3+~(x) exp( i~ , t ) l  (12) 
n 

In the limit of p + 00 and E + 0, we can prove 

lim J f(u:-u:)dx=-$ 
p-03,e+O 

where f is the sampling function which we choose as 

f =  e( -x)e(x+a) .  

Performing the Bogoliubov transformation, we get 
+aD 

e( -x) e( x + a ) :  +++: dx = C f (a;a,, + b;b,,). ".=I_, . n 

The fluctuation of N can be shown from equation (14) as 

(ANf)' = 1 f '( U; + ui) dx - (1 f (  U;+ v i ) )  dx - ( IXf( U; - v i ) )  dx 
2 2 

X x 

kk'  

= $ - ( y -  (-$)'+O = 0. (17) 

This means that we obtain a fractional fermion charge without fluctuations provided 
the background field has singularity. 
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The physical picture of our conclusion is obvious: as discussed by Jackiw et a1 the 
quantum fractionisation in soliton system is of course to be contrasted with the situation 
of a two-centred molecule with one electron passing between the two atoms. Although 
the expectation value of the charge near one atom of the latter is i, we can prove that 
the fluctuation (AN)’ is non-zero since the ground states are degenerate. Then we 
cannot get a fractional fermion number. However, if we have an infinite barrier between 
these two atoms and if the electron cannot penetrate this barrier, the wavefunctions 
of the right-hand side and the left-hand side will be independent, and the degeneracy 
of the exchange symmetry between the left and the right will be cancelled. The 
singularity of the scalar field in the Dirac equation plays the role of an infinite barrier, 
since the Klein paradox will not happen for a scalar potential [12]. 

RKS thanks Professor W K Cheng for helpful discussions. 
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